1:2.4%10", 1,:4.8%x10" W/cm

T (nsec)
200
330
(h)
—>| |<— £00 nsec
FIG. 2, Laser pulse shape (a) with no N, and () with N, in the
lasing mixture. e Sl
520
¢”' diameter of the beam which was 1 mm. The laser
beam was incident from the left. The four frames were S i
taken on four separate shots at the indicated exposure
720

FIG. 4. Series of image-converter frames illustrating break-
down growth at near-threshold intensity. Dashed lines show
e~! diameter of the laser beam which was incident from the
left.

times relative to the start of the pulse. The breakdown
initiated near the peak laser intensity and grew radially
and axially as a volume absorbing plasma. The axial
velocity was slightly larger than the radial velocity
which had an initial value =1,4 x10° cm/sec. The veloc-
ities were observed to decrease by =25% after =300
nsec due probably to the fall off in laser intensity. Note
that the particle remains visible in each of the frames.

At high laser intensities the character of the break-
down growth changed abruptly. This is illustrated in
Fig. 5 where the intensity was increased above thresh-
old by a factor of 5. The top frame is a time-integrated
photograph of the breakdown. In the remaining frames
e  Iin the white dot indicates the position of the particle. For
these higher intensities the breakdown developed as a

FIG. 3, Back-lighted micrograph of a 50-um carbon particle

taken 6 usec after being hit by a laser pulse incident from the thin absorbing front which propagated towards the laser

left, and grew radially. This type of breakdown growth is
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characteristic of the laser-supported denotation wave
(LSD) described by Raizer,'*

The radial and axial velocities obtained from data of
this type are shown in Fig. 6 as a function of intensity.
At lower intensities both velocity components increased
approximately linearly with intensity. At higher intensi-
ties the axial velocity varied roughly as I'/® which is in
agreement with planar LSD wave theory. '

The extinction of laser intensity by the breakdown
plasma for a spot diameter of ] mm was measured
directly by reimaging the focal spot with magnification
on two photon drag detectors, one giving the power
transmitted through the central disk of radius » =0, 023
cm and the other giving the power through concentric
annulus with the outer radius being 0.067 cm. A com-
parison was made of the arrival time of the luminous
front at a given radius within the beam with the time for
the cutoff of laser power within that radius. For most

T =1.7%10% w/em?
I,:2.4%10°% W/cm?

T (nsec)

Time
Integrated

105

15

135

FIG. 5. Breakdown dynamics at five times threshold intensity.
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FIG. 6. Axial and radial velocities of particle-initiated break-
down within the beam,

conditions the two times are the same, indicating total
laser extinction within the luminous region. However, at
low intensity or for small plasma dimensions the cutoff
of the laser energy occurred =150 nsec after the arrival
of the luminous front, indicating a relatively long ab-
sorption depth in the plasma. This is consistent with the
character of the breakdown development at low intensi-
ties, e.g., Fig. 4. The absorption depths within the
breakdown plasma was estimated (neglecting reflective
losses) by comparing the luminous thickness with the

['rp(nuc),v(cm)]
o [150,0.2)
e [400,02]
4 (150, 0.05)]
O [400,0.05)

£,/E,

01

T IT_FYT‘T

® [400,0.028] e

0.0 1 LlLllul i 1¢111nl stakesclinak
0.1 1 0

B T/t

FIG. 7. Fractional energy transmission as a function of beam
size r, pulse length 7,, and beam intensity z, where v, () is the
radial growth rate at intensity I, The solid curve is
theoretical.
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transmitted intensity. At near-threshold intensities
8=~0.5 mm, and at higher intensities 6~0.15 mm.

These results for the finite radial growth rates indi-
cate that the total energy transmitted through a beam
with a particle-induced breakdown should be a strong
function of the beam diameter and pulse length. For
example, for a large beam and a short pulse length the
breakdown does have a chance to grow substantially and
causes little attenuation even though a fully developed
breakdown has been initiated. These statements can be
made more quantitative in terms of an idealized model
for the effects of the finite radial growth rate in which
we consider a uniform laser beam of radius r and a
rectangular pulse shape of pulse length 7,. If the plas-
ma, assumed to be opaque, grows at a constant radial
velocity v,(/), the beam will be cutoff at tome 7,
=7/v,(I). The transmitted energy E, is

E,=E,(1-38%),
and

E,=2E,/38,
where E, is the total pulse energy and 8=v(l)7,/7.

T’<T‘

T,

This effect was studied directly by measuring the
transmitted energy as a function of the incident pulse
energy for three different spot sizes and two pulse
lengths. A short pulse length was obtained by removing
the N, from the lasing mixture. These data are shown
in Fig. 7 where the fraction of transmitted energy is
shown as a function of the parameter f. The values of
v,(!) used in the parameter g were obtained from Fig. 6.
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The solid curve shows the theoretical model which, even
though idealized, is in close agreement with the data.
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Hole-boring in clouds by high-intensity laser beams: theory

R. C. Harney

The physics of hole-boring in clouds and fogs by high-intensity ir laser beams is investigated in a zeroth-
order approximation. Simple analytical expressions are obtained which describe the phenomena of interest.
Application of these expressions to various types of clouds and fogs yields order-of-magnitude estimates of
the laser powers required to bore holes of a given size and quality. The power requirements for hole-boring
through light ground fogs or thin overcasts are in excess of 100 kW, while hole-boring through thicker over-
casts will require laser powers much in excess of 10 MW. Dispersal of ground fogs over an extended area will
require laser powers in the 10°-10°-W range and thus may not be cost effective simply in terms of energy con-

sumption.

Introduction

The possible application of high-intensity laser beams
to boring holes in clouds or dispersing fogs has received
considerable attention because of its obvious potential
impacts on long distance communications and trans-
portation safety. Numerous theoretical calculations! 4
and experiments® ® have already been performed with
varying degrees of sophistication. However, few of
these, if any, have seriously addressed the laser re-
quirements for hole-boring or fog dissipation in prac-
tical applications. Consequently, it may be useful at this
point to analyze the problem of hole-boring from an
elementary point of view to place the probiem in its
proper technological perspective.

In this paper we examine the physics of hole-boring
in a zeroth-order approximation to obtain a few simple
analytical expressions describing the phenomena of
interest. These simple expressions are then applied to
hole-boring in three different types of clouds to obtain
order-of-magnitude estimates of the laser powers re-
quired to bore a given size and quality of hole. The
results indicate that hole-boring through light fogs and
thin overcasts will require powers at least of the order
of 100 kW, while hole-boring through moderate to heavy
overcasts will require powers in excess of 10 MW.
Dispersal of ground fog over an extended area will re-
quire laser powers in the 10°-109-W range and thus may
not be cost effective simply in terms of energy con-
sumption.

" The author is with MIT Lincoln Laboratory, Lexington, Massa-
chusetts 02173.
Received 25 April 1977.
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Theory

Fogs and clouds are composed of fine droplets of
water roughly spherical in shape. Droplet diameters
range from submicrometer to a few tens of micrometers
with mean droplet diameters in the 1-5-um range.®
The total water content in a cloud may vary from 0.01
g/m?3 to 10 g/m3,

Consider a single droplet of water of radius R im-
mersed in a laser beam of intensity / and 10.6-um
wavelength. If the diameter of the droplet is of the
order of or smaller than the absorption length of the
laser radiation, the droplet will be uniformly heated
throughout its volume. As will be seen shortly, this
condition is valid for the majority of droplets in almost
any cloud. Consequently, the rate of energy deposition
in the droplet due to absorption of the laser light is
proportional to the volume of the droplet and to the
laser intensity:

dE| 4
dt | dep " 3
where K is the absorption coefficient. Although K is
in actuality a function of R, in the zeroth-order ap-
proximation characteristic of this paper we will assume
it to be a constant with a value, K ~ 10 cm~1.1011 The
absorption length is the inverse of K, so Eq. (1) is valid
for droplets with diameters of the order of 10 um or less.
Neglecting heat transfer to the surrounding air and the
changing surface energy of the droplet, the rate of en-
ergy loss of the droplet is proportional to the mass loss
through vaporization:
dE| M o R
. H o 4xR?Hp at 2)
where H is the heat of vaporization of water (2300 J/g)
and p is the density of water (1 g/cm?). In the adiabatic
approximation the rate of energy loss equals the rate of
energy deposition. Consequently,

KR®I, (1)




—m Hp — (3)
or upon integration

K t
R(t) =R, ——f tdr]- 4
(t) exp[ HaJo I(t) (4)

p
The vaporization time t, may be defined as the time
required for the droplet to shrink to some arbitrary
fraction of its original volume when exposed to a con-
stant intensity /,. A volume reduction of e 10 will re-
duce all droplets less than 50-um diam to submicro-
meter diameters. Since this is mathematically conve-
nient, we will use this factor. From Eq. (4) we now
find

R -10 Kl t,

o= -t )
R, 3 3Hp
or
25
t, = 10dip ~ a sec (6)
Ki, I,

when [, is expressed in W/cm?2. A minimum possible
value for ¢, can be obtained from hydrodynamic con-
siderations. Regardless of the energy deposited, the
droplet of vapor cannot expand significantly faster than
the sound speed C,. For a vapor density reduction of
103, C, = 3 X 10* cm/sec, and R, = 5 um, we find

10R, - 2
'rmnn"'—_R"'?XlO"Se(‘. 7

s

Consequently, increasing the intensity beyond 108
W/em? will have little effect on ¢,..

Now consider a laser beam incident on a cloud of
droplets. Initially (¢ = 0) the laser beam is attenuated
due to both absorption and scattering. The intensity
as a function of distance into the cloud is given by

I(x,0) = I, exp(—ax), (8)

where « is the extinction coefficient. As with K, a is
a function of the distribution of particle diameters. We
will assume it to be a constant in time, depending only
on the water content Q(g/m?) of the cloud. Thus,

3 :
a= (eN=xR,?) =4—‘: <RL.,> ~1073Q cm~!, 9)

where ¢ is the Mie efficiency factor (~0.3) and N is the
number density of droplets. A value R, ~ 2 um was
chosen because droplets in this size range have the most
influence on 81011

The absorption of the laser light causes droplets in
the cloud to vaporize. However, because the intersity
falls off with distance into the cloud, droplets at the
front of the cloud vaporize before droplets at the back
of the cloud. The result is a vaporization front which
propagates at some velocity V through the cloud in the
direction of the laser beam. Consider a droplet which
is a small distance dx into the cloud. Att = ¢, this
droplet will only be partially vaporized, with a radius
given by

K ty
R(t,) = R, exp [ - f I, exp(-adx )dt]
3Hp Jo

Kl,
=R, sl 1l
AR [ 3Hp J; ¢ "d’)d']

Kl,
= R, exp [ - ;if_p (t, = ut,.dx)] . (10)

Since at t = t,, the droplets at x = 0 have just vaporized,
they no longer attenuate the beam. Consequently, the
droplets at x = dx will vaporize at time t’ given by

R(t’) = R, exp ( - :(—H—l"') r,,)

Kl Kl v
=R, ex [-—-—"(tv— todx) - —= dl]- 11
i 3Hp s 3Hp Jt, i

Equation (11) simplifies to

ex [ t,dx X (' -t )K'"] 1 (12)
at,ax — - = ] bl
d 3Hp 3Hp

which implies

atydx — (t' = t,) = 0. (13)
Consequently, we see that the vaporization front moves
with velocity

A S

Faty . o

where we have used our earlier estimates of « and ¢,. It
should be noted that the speed of light sets an upper
limit to V.

If there is a wind in the cloud, droplets will contin-
ually move into the laser beam. Even in the absence of
a real wind, heating-induced convection and/or Brow-
nian motion will cause an effective wind. If we assume
the laser has been on for a time long compared with ¢,
(thus we may.consider the steady-state solution) and
label the wind velocity U, we find the following simple
results. At the front of the cloud the time required for
vaporization of the dropletsis t,. Here the droplets will
travel a distance Ut, into the laser beam before vapor-
izing. At adistance x into the cloud, the time required
for vaporization of the droplets is t, + x/V. At this
point the droplets can penetrate a distance Ut, + xU/V
into the laser beam. This behavior is shown schema-
tically in Fig. 1. After the water vapor has been carried
out of the laser beam by the wind, it will gradually lose
its accumulated heat energy and recondense into
droplets. The phenomenon of recondensation has no
effect on hole-boring but is of prime importance in fog
dispersal, which will be discussed later.

Clearly, if any of the laser beam is to penetrate the
cloud completely, the quantity Ut, + LU/V, where L
is the thickness of the cloud, must be smaller than the
beam diameter D. Thus

Ut, + L(U/V) = Ut,(1+ al) <D. (15)

Expressing this inequality in terms of the laser intensity
yields

50
L> 35'— (1 4 10-%QL)W/cm? (16)

as the minimum intensity which will bore a hole (of zero
size at the back of the cloud) in a given cloud. However,
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Fig. 1. Schematic of the clearing profile of a cw laser beam. The fog
thickness is L; the laser beam diameter, [); the wind speed, U the
vaporization front velocity, V. and the vaporization time, t,.

in most practical applications, the hole size at the rear
of the cloud must be an appreciable fraction of the beam
size. This causes an increase in the required intensity
by a factor (1 — D,)~!, where D, is the required hole size
expressed as a fraction of the laser beam size. In
practical applications, the factor may be as large as
100.

The relations derived above serve to define the be-
havior of cw laser beams in clouds and fogs. However,
we can also discuss the behavior of pulsed laser beams
in terms of the same quantities, ¢, and V. If the pulse
duration ¢, is longer than the time required for the va-
porization front to be initiated and propagate com-
pletely through the cloud, t, + L/V, the laser pulse may
be effectively treated as a cw beam. After the pulse is
over, the hole will be filled in completely by the wind in
atime t; = D/U.

Consider a pulse of duration ¢, = t, + L/V =¢,(1 +
al), which is sufficiently short that the effects of wind
may be neglected (¢, << D/U). Substituting the ex-
pression for ¢, we obtain

Lty > 25(1 + al))/em? (1n

as the minimum pulse energy density required to bore
a hole. If aL > 1, this reduces to

Loty > 25al, = 0.025LQ J/cm?. (18)

It is interesting to note that this is 12.5 times the total
heat of vaporization of the water contained in a 1-cm?
column through the cloud.

If t, <t, + L/V, the laser pulse cannot bore a com-
plete hole before the pulse is over. Consider first the
case tp < tymin. This limit is applicable to mode-locked
or @-switched laser pulses. In this case no vaporization
at all can occur before the pulse is over. However, it still
may be possible to deposit enough energy in the droplets
so they will vaporize after the pulse is over. For a
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complete hole to be bored, the total energy deposited
in a droplet at the rear of the cloud must exceed the total
vaporization energy of the droplet. This requirement
yields the following equation:

4 R"R 4xR,?
Egep = ”.{ KI, exp(—al)t, > _';_ oH, 19)
which implies
2.3 i
1, > ﬂﬂ explal) ~ 22 exp(1073QL)W/cm?, (20)
Kt, tp

A moving vaporization front will still occur, although
it will propagate at a velocity just slightly less than the
speed of light. For these ultrashort pulses, if Hp/Kt,

< I, < explaL)Hp/Kt,, a hole of length L’ will be
bored

i (%‘i) ; @n

« N
If I, < Hp/Kt,, no hole at all will be bored.

For pulses of duration t,mi, < t, <t,, no clearing will
take place. Droplets at the front of the cloud will be
reduced in size but not to the point of complete vapor-
ization. For pulses with durationst, <t, <t.+L/V,
some complete vaporization will occur at the front of the
cloud; but a complete hole will not be bored. The

length of the hole that will be cleared in this case is given
by

L' = Vity = t,). (22)

Single laser pulses are likely to have little utility in
hole-boring applications. However, long trains of re-
petitive laser pulses may find application. Consider
first a train of intenst [, > exp(al)Hp/Kt,], ultrashort
(t, < tymin) laser pulses of separation t,. The rela-
tionship of t, and ¢, is clarified in Fig. 2. The first pulse
of this train will have bored a complete hole after a time
of the order of t, i, has elapsed. If the pulse separation
is such that ¢, iy has elapsed. 1f the pulse separation
is such that ¢, .,in < ¢, <t; — L/c, the wind cannot have
completely closed the hole; and a fraction of the second
pulse will pass through the cloud unattenuated with the
remainder of the pulse serving to reopen the part of the
original hole which had been closed. Each succeeding
pulse in the train will behave just like the second pulse.
If the pulse separation is such that t; — L/c <t, <ty, the
hole formed by the first pulse will be closed but not
completely filled with fresh droplets. Consequently,

b=t

[~

SR

e i >l

s ”.‘ ’p "‘-‘

Fig. 2. Characteristic quantities of a laser pulse train. [, is the peak

intensity; ¢, the pulse separation: ¢, the pulse duration. Although

a rectangular pulse train is indicated, the relations in the text should
be valid for pulses of any shape.
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a second pulse of much lower intensity can open the hole
again (albeit after the pulse is over). If ¢, > t;, the hole
will be completely filled, and the situation regarding the
second pulse is as if the first pulse had never happened.
If the pulse intensity is less than that required to bore
a hole completely with asingle pulse, i.e., ], < exp(al.)-
Hp/Kt,, and the pulse separation is less than the hole
filling time ¢, < t;, it is possible for a train of pulses to
open gradually and maintain a hole as long as the av-
erage intensity exceeds the cw limit minimum. For oL
>» 1, we have the relation
(" KD

If we now consider pulses with duration t;, > t, in, the
requirement for maintaining a hole is again that the
average intensity exceed the cw limit minimum. Since
the phenomenon of hole-boring is a process linear in the
intensity, this is to be expected.

I (23)

Applications

In the preceding section it was argued that, in boring
and maintaining a hole, pulse trains must meet average
requirements identical to those of the cw limit. When
considering single laser pulses, only long pulses (which
can be treated as a cw beam) or very short intense pulses
are capable of hole-boring. Consequently, in making
estimates of the laser requirements for hole-boring we
need consider only the cw and short-pulse limits. Due
to the extreme approximations made in the derivations
only order of magnitude accuracy can be expected.
However, this should be more than adequate for es-
tablishing the practicality of hole-boring. We shall
consider three kinds of clouds: thin ground fog, mod-
erate overcast, and thunderheads. These examples
cover wide ranges of propagation distances, water con-
tents, and wind speeds and should give good indications
of where hole-boring may be expected to be practical.
For all calculations we will assume a beam diameter 1)
= 100 cm. We begin in the cw case.

Light Ground Fog (Q ~ 0.1, L ~ 104 cm, U~ 30 cm/
sec)

From Eq. (9), a ~ 10~*em ™1

From Eq. (16), I, > 15 W/cm?®.

Total power is I,D? > 150 kW.

From Eq. (14), V > 5 X 109 em/sec.

From Eq. (6), ¢, < 2.2 sec.

These results are valid if the beam is on longer than
t. + L/V, which is roughly 4.2 sec at the minimum in-
tensity.

Moderate Overcast (Q ~ 1, L ~ 105 cm, U~ 300 cm/
sec)

a~10""em~L

I, > 6.6 kW/cm?

Total power > 66 MW.

V > 1.4 X 10° cm/sec.

t, < 7 msec.

These results are valid if the beam is on longer than
0.7 sec at the minimum intensity.

Thunderhead (Q ~ 10, L ~ 108 cm, U ~ 3000 cm/sec)

a~10"2em™),

1, > 6MW/cm?2,

Total power > 60 GW.

V > 1.2 X 10% em/sec.

t, <107° sec.

These results are valid if the beam is no longer than
8 msec at the minimum intensity.

Now we examine the ultrashort pulse limit, that is,
t, <1077 sec.

Light Ground Fog

al, = 1.
I,t, > 6.3d/cm?.
Total energy > 63 kd.

Moderate Overcast

al. = 100.

1.t > 6 X 10% J/cm?2,

Total energy > 6 X 1047 J.

These values are so large (the explosion of 1 Mton of
TNT yields only about 106 J) that we need not continue
further in this limit.

Discussion

It should be noted that these resuits do not include
the (possibly large) factor (1 — D,)~!. Consequently
it appears that cw hole-boring through ground fogs will
require laser powers in excess of 100 kW, while cw
hole-boring in moderate to heavy overcasts will require
laser powers very much greater than 10 MW and ex-
ceeding 10 GW in the limiting example of a thund-
erhead. Short-pulse hole-boring in light ground fogs
will require pulse energies much in excess of 10 kJ, while
short-pulse hole-boring in any clouds other than light
ground fogs requires incomprehensibly large pulse
energies.

In the preceding calculations we have completely
neglected the deleterious effects of thermal blooming.!?
In dry air, thermal blooming becomes important at in-
tensities above 100 W/cm?2. However, in the moist air
of a vaporized cloud, thermal blooming could become
important at 1-W/cm? intensities or less. Thermal
blooming in the near field can be readily corrected using
coherent optical adaptive techniques (COAT).!13
Strong blooming occurring in the far field, as would be
encountered in vertical hole-boring through high clouds,
cannot be completely corrected. The effect of thermal
blooming is to reduce the beam intensity, thus requiring
an increased initial intensity to bore a hole. Since
thermal blooming is a nonlinear process, it is entirely
possible that in some situations even an infinitely large
initial intensity could not bore a hole. Beam slewing,
which is frequently used to reduce the effects of thermal
blooming, acts like an increased wind and consequently
is not very helpful as far as hole-boring is concerned.
The severely detrimental effects of thermal blooming
dictate that hole-boring may not be feasible in light to
moderate overcasts even if it were possible in the ab-
sence of thermal blooming.
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An important application of high-intensity lasers
which is closely related to hole-boring is the dissipation
of fog over large areas. As mentioned earlier, recon-
densation is of critical importance in this application.
The rate of recondensation depends on factors as di-
verse as the dust content of the fog, the number of
submicron droplets which remain after passage through
the laser beam, the amount of heat which the water
vapor has absorbed, the air and ground temperatures,
and the wind speed and turbulence levels. Conse-
quently, it is not amenable to simple analysis. How-
ever, it seems probable that recondensation will occur
within a few minutes after leaving the laser beam.

Let us consider the requirements for clearing a run-
way of dimensions (100 m by 3000 m) of a light ground
fog (Q ~ 0.1, U ~ 100 cm/sec) which is 100 m thick.
Neglecting recondensation and assuming a rectangular
laser beam with dimensions 100 cm by 100 m placed
across the short end of the runway with the wind di-
rection perpendicular to the laser beam, we can easily
calculate that an intensity of 50 W/cm? is required to
dissipate the fog at the laser beam. This corresponds
to a total laser power of 50 MW. However, it would
take 3000 sec (50 min) for the wind to move a distance
of 3000 m. Thus, it seems probable that recondensation
will take place within a few hundred meters of the laser
array. To maintain the clear zone for the length of the
runway a number of laser arrays must be located down
the length of the runway. Side winds caused by laser
heating-induced convection will have effects similar to
recondensation. Higher winds may reduce these
problems but will require much higher initial laser
powers. Consequently, it seems clear that total laser
powers of the order of 108-10° W are necessary for fog
dispersal on the scale of an airport runway. Since these
powers must be maintained for extended periods
(possibly hours) it is important to realize that 109 W is
equivalent to the output of a large electrical generating
plant. Given this large energy requirement, the ap-
plication of lasers to fog dissipation is probably not cost
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effective even if it were, in principle, technologically
feasible.

Conclusions

In the preceding sections simple analytical expres-
sions have been obtained in a zeroth-order approxi-
mation which describe the phenomena involved in cloud
hole-boring by high-intensity lasers. The validity of
the analysis is demonstrated by the fact that all the
phenomena predicted by the simple analysis have been
anticipated by the more sophisticated analyses of oth-
ers. Application of the relations arising from the simple
analysis to typical fogs and clouds indicates that hole-
boring in light fogs and very thin overcasts will require
laser powers in excess of 100 kW. Problems associated
with thermal blooming indicate that hole-boring in
moderate to heavy overcasts may not be feasible re-
gardless of the laser power available. The energy re-
quirements to dissipate fog over large areas such as
airport runways are so large (~10° W) that the appli-
cation is probably not cost effective.

This work was sponsored by the Advanced Research
Projects Agency of the Department of Defense.
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Thermal-blooming compensation:

experimental

observations using a deformable-mirror system

C. A. Primmerman and D. G. Fouche

A laboratory experiment has demonstrated the effectiveness of compensating for forced-convection-domi-
nated cw thermal blooming by using a deformable mirror to add phase corrections to the laser beam. In
agreement with theoretical predictions, the peak focal-plane irradiance has been increased by a factor of 3

under severely bloomed conditions.

I. Introduction

As a laser beam passes through an absorbing medi-
um, it heats the medium causing the index of refrac-
tion along its path to change. The induced index-
of -refraction gradients, in turn, cause the beam to be
spread or bloomed. This phenomenon of thermal
blooming is well known and has been studied both
theoretically and experimentally for a variety of dif-
ferent conditions.! Recently it has been suggested
that one could compensate for thermal blooming by
using an adaptive-optics system to add appropriate
phase corrections at the beam transmitter.?2 In this
article we report experimental evidence conclusively
demonstrating that this technique may be used to

compensate for the blooming of a cw slewed laser
beam.

ll. Deformable-Mirror System

We apply phase corrections to a laser beam by
means of a deformable-mirror system developed by
Itek Corporation.? The deformable mirror uses a
novel design in that instead of having discrete actua-
tors, it consists of a monolithic disk of piezoelectric
crystal into which is placed an array of electrodes.
There are fifty-seven electrodes which, energized
with up to £1500 V, can produce surface deforma-
tions of £0.5 um over an active area 1.5 in. (3.8 cm) in
diameter. The mirror surface is a metalized glass
disk cemented on the piezoelectric crystal.

The electrodes may be individually actuated so
that any phase profile consistent with the maximum
deformation and the spatial-frequency limitation im-
posed by the finite number of actuators may be put

The authors are with Massachusetts Institute of Technology,
Lincoln Laboratory, Lexington, Massachusetts 02173.
Received 3 December 1975.
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on the mirror. But for the experiment reported here,
the relative voltages of the electrodes were fixed by a
resistive network to give the relative phase profile
shown in Fig. 1. This profile closely matches that
calculated by Bradley and Herrmann? to give the
maximum correction for a truncated Gaussian beam
undergoing forced-convection-dominated thermal
blooming, if only corrections through third order are
taken into account. Thus, the profile of Fig. 1 in-
cludes refocus and third-order spherical, coma, and
astigmatism terms; it does not include tilt, since tilt
produces only a shift of the beam and no change in
intensity. In these experiments we manually varied
the amplitude of the deformation from flat to about
2\ peak to peak, but did not vary the shape.

Il. Experimental Conditions

The experimental arrangement is shown in Fig. 2.
We use a cw argon-ion laser that produces a Gauss-
ian beam with up to 2 W of useful power at 5145 A;
the beam is assumed to have uniform phase. The
beam is expanded to make the 1/e2? diameter 3.8 cm,
is truncated at this diameter, and is reflected from
the deformable mirror. The beam is then contracted
and is slewed through the absorption cell by a vari-
able-speed slewing mirror. In the focal plane just
beyond the cell we have a row of 50-um pinholes at a
slight angle to the slewed beam. By detecting the
light coming through these pinholes we can measure
both the intensity and the shape of the bloomed
beam as it leaves the gas cell. The optics are such
that with the absorption cell empty the focal-spot di-
ameter is within ~10% of the diffraction limit.

The gas cell is filled with a few Torr of NO,,
enough to absorb ~50% of the incident radiation in
the 1.5-m long tank, and 1 atm of a nonabsorbing
buffer gas. Since we are interested in studying the
thermal blooming of a slewed beam (that is, one in
which forced convection is the dominant cooling
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Fig. 1. Actual surface contour on the deformable mirror as mea-

sured interferometrically. The profile was chosen to match that

determined by computational analysis of the laser-beam propaga-
tion. Contours are labeled in units of wavelength.
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Fig. 2. Experimental arrangement.

mechanism), the gas cell is mounted vertically to
minimize free-convection cooling, and CO; is used as
the buffer gas to reduce conduction cooling. Mount-
ing the gas cell vertically effectively eliminates free-
convection effects; but, unfortunately conduction ef-
fects are not always negligible and must be taken into
account.

As shown by Bradley and Herrmann,? the propaga-
tion of a slewed beam through an absorbing medium
can be characterized by the four dimensionless num-

bers:

absorption number—N, =aR;

Fresnel number—Nr  =ka?/R;

slewing number—N,, =wR/v;

distortion number —Np =(1/pcpeo)(de/dT)
(aPRR/av);

where « is the absorption coefficient, R is the range,
k is the wavenumber, a is the 1/e radius at the cell
entrance, w is the slewing frequency, v is the constant

cross-wind velocity, P is the incident power, and (1/
pcpe)(2¢/aT) is a constant characterizing the change
in index of refraction of the heated gas. For our lab-
oratory experiment an additional dimensionless
number is required as a measure of the importance of
conduction compared to forced convectior*

conduction number—Nc==«/v/2av,

where « is the thermal diffusivity.
The actual experimental conditions are given by
the following set of parameters:

a =46x10"3cm™1;

R =150 cm;

k =1.22x105¢cm™1;

a =0.25cm,;

w = 0-0.2 rad /sec (variable);
v = 0-3 cm/sec (variable);
P = 0.03-1 W (variable);
(1/pcpeo)(3€¢/dT) =1.95 % 10-3J-1 cm?;
K =0.11 cm2-sec™1;

Na = (0.69;

N¢ = 45;

N, = 7.5-30 (variable);

Np = 686P/v (variable);

Nc¢ = (.1-= (variable).

The three basic variables in this experiment are
the input power at the cell entrance P, the slew fre-
quency &, and the constant cross-wind velocity v,
which can be varied independently of w by changing
the distance from the slewing mirror to the cell en-
trance. These variables enable us to test the depen-
dence of the thermal-blooming corrections on the di-
mensionless numbers N, Np, Nc. We can also vary
N4 and Nf, but in these experiments no attempt has
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Fig. 3. Peak focal-plane intensity vs input power for corrected
and uncorrected beams. The straight line would be the intensity
if there were absorption but no blooming. v = 1.65 cm/sec, N¢ =
0.19, N, = 10, Other parameters are listed in the text.
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Fig. 4. Intensity through pinhole array for severely bloomed con-
ditions at P = 0.45 W. Lower curve: uncorrected beam. Upper
curve: corrected beam. Parameters as in Fig. 3.

been made to study systematically the effect of these
parameters on phase correction for thermal bloom-
ing.

IV. Experimental Results

A. Results of Varying Power

In Fig. 3 we show the measured peak focal-plane
intensity plotted against input power for the uncor-
rected beam, the corrected beam, and the hypotheti-
cal situation of absorption with no blooming. Vary-
ing the power is equivalent to varying the distortion
number, since Np « P. The uncorrected curve was
taken with the deformable mirror in the flat condi-
tion; the corrected curve was obtained by adjusting
the amplitude of the mirror deformation to get the
maximum possible intensity to each power.

The uncorrected curve exhibits the classic ther-
mal-blooming behavior: the intensity first increases
with increasing power and then, after a certain criti-
cal power P., decreases with further increases in the
input power. As expected, the corrected curve shifts
upward to higher intensities and outward to higher
critical power. We observe that the maximum inten-
sity increases 76% over the uncorrected case and that
at certain powers there is a factor of 3 increase in in-
tensity. This result is representative: we have con-
sistently achieved improvements in maximum inten-
sity of ~70%. We also observe that the critical power
increases by almost a factor of 2.5. A reasonable fig-
ure of merit in atmospheric propagation is I, (P.)P.,
the maximum intensity times the critical power. On
the basis of this figure of merit we have achieved
fourfold improvement using our deformable-mirror
system.

Figure 4 shows oscilloscope traces of the detector
voltage as the beam sweeps across our pinhole array.
The spike amplitudes are proportional to beam irra-

diance, and the envelope of spikes gives the profile of

the beam perpendicuiar to the slew direction. (From
the widths of the spikes, unresolved in this photo-
graph, we can also obtain the profile of the beam par-
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allel to the slew direction.) The lower trace shows
the severely bloomed beam at P = 0.45 W; the upper
trace shows the corrected beam at the same power.
We see that the peak intensity has increased by al-
most a factor of 3 and that the beam shape has been
greatly improved.

Figure 5 shows photographs of the beam in the
focal plane. In the top picture we see the character-
istic crescent-shaped bloomed beam. In the next

Fig. 5. Actual photographs of the bloomed, corrected, and un-

bloomed beams in the focal plane. The top two pictures corre-

spond to the pinhole traces of Fig 4. The slight ellipticity of the

unbloomed spot results from msufficient shutter speed to freeze
the beam
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picture we see the corrected beam, reduced in size,
and with only a slight remaining indication of a cres-
cent shape. For comparison, the bottom photograph
shows the low-power unbloomed beam. (The some-
what elliptical shape results from the fact that the
shutter speed is not fast enough to freeze the beam.)
Note that the corrected and uncorrected bloomed
beams are both shifted into the wind with respect to
the unbloomed beam, since our deformable mirror
does not add a tilt correction. We observe that, con-
sistent with the intensities shown in Fig. 3, the cor-
rected spot size is still larger than the unbloomed
spot size.

B. Comparison with Propagation-Code Resuits

To compare our experimental results with theoret-
ical predictions for phase compensation of thermal
blooming we have employed the Bradley-Herrmann
propagation code. In Fig. 6 we show propagation-
code-generated plots of peak focal-plane irradiance
against power for no correction and for two different
corrections. The upper corrected curve is the opti-

mum correction using the Bradley-Herrmann meth-
od; the lower corrected curve is the correction ob-
tained using the Zernike polynominal expansion of
the contour actually on the mirror. The input pa-
rameters used in the code were the experimentally
measured conditions corresponding to the results of
Fig. 3. To facilitate comparison of theory and exper-
iment the curves of Figs. 3 and 6 have been normal-
ized to the same unbloomed intensity.

Looking first at the uncorrected curves we note
that both theoretical and experimental curves follow
roughly the dependence I, « P exp(—P/P.) until P ~
2P.. Beyond this point the curves fall off much
more slowly than given by the exponential depen-
dence. At P = 3P., for instance, the theoretical
curve has a peak irradiance twice that given by the
simple exponential dependence. The theoretical
curve peaks at P = 0.155 W; the experimental curve,
at P = 0.18 W. Thus, the critical powers agree to
within ~15%—good agreement considering the many
possibilities for consistent error. But although the
critical powers agree well, the experimental and theo-
retical maximum intensities are not in such good
agreement. Some of the disagreement is attributable
to the difference in P.. But, as illustrated in Fig. 3,
we often find that the experimentally determined in-
tensity at P. is about % the unbloomed intensity,
while the theoretical prediction is that the intensity
at P. should be 1/e times the unbloomed intensity.
The reason for this disagreement is still unclear.

Comparing the corrected curves we find that the
experimental curve falls almost on the optimum the-
oretical curve; but this agreement is probably a fortu-
itous coincidence resulting from the consistent shift
between theoretical and experimental results. To
compare maore properly the corrected curves we refer
to Table I and compare the increases in irradiance
over the uncorrected values. Experimentally we ob-
serve that the maximum intensity in-reases a factor
of 1.76 compared to 1.98 for the theoretical increase—
an agreement within 15%. The maximum increase at
any power is 2.87 experimentally compared to 2.48
theoretically—again an agreement within 15%. The
agreement in P. is not so close—2.44 experimentally
in 1.94 theoretically—but a look at Fig. 3 shows that
it is extremely difficult to determine accurately the
critical power for the experimental corrected curve.

Table |.
P (corrected) lpﬂP,.) corrected lp corrected
lax
By 15(P.) P.(uncorrected) [,(P.)uncorrected [, uncorrected

Experimental = b K

uncorrected 0.18 0.9
Experimental 0.44 155 244 1.76 2.87

corrected
Theoretical 0.155 0.56 =it i A

incorrected
F— 0.300 1.11 1.94 1.98 2.48

r corrected
- 0.415 1.53 2.68 2,78 4.33

rrected
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The experimental correction is still ~30% below the
optimum correction. This difference results primar-
ily not from any deficiency of the mirror but from the
fact that only third-order corrections were specified
for the mirror surface. Theoretically, adding phase
corrections through fifth order results in corrected
intensities very close to optimum; so there is reason
to believe that if the mirror figure were corrected
through the fifth order the experimental curve would
also approach the optimum.

The propagation-code results are seen to give
quantitative agreement with the experimental results
to within about 15%. Considering the many parame-
ters involved in making the comparison—eleven ex-
perimental values must be supplied in the propaga-
tion code—and the concomitant chances for consis-
tent error we believe this 15% agreement represents
very good agreement indeed.

C. Results of Varying Cross-Wind Velocity

In our experimental arrangement we can vary the
effective cross-wind velocity v, while keeping N, con-
stant, by varying the slew frequency w. In the ab-
sence of conduction the cross-wind velocity and the
input power appear only in the distortion number
and only in the combination Ny « P/v. Thus, we ex-
pect that the critical power P. and the maximum in-
tensity /,(P.) should increase linearly with v. Ex-
perimental results verify these expectations. If v is
large enough to make conduction negligible, P, and
I,(P,) are proportional to v for both uncorrected and
corrected beams.

Since N, « 1/v, as v becomes small, conduction be-
comes important, and this linear behavior is no long-
er observed. And as v — 0, conduction dominates,
and P, and /,(P.) approach constant values deter-
mined by conduction alone. In addition, as conduc-
tion becomes important, our phase corrections be-
come less effective, since the phase profile was de-
rived using a theoretical treatment that neglected
conduction. This effect may be seen in Fig. 7, where
we plot the percentage increase in I,(P.) against
1/N¢. When 1/Ne = 0, conduction is the only cool-
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ing mechanism, and no correction is obtained. As
1/N¢ increases, forced-convection cooling becomes
more effective, and the percentage improvement rises
sharply. Finally, when 1/N¢ reaches a value such
that conduction is negligible compared to forced con-
vection, the improvement levels off at its maximum
value. From these results we conclude that if N¢ <
0.3, conduction may be ignored compared to forced
convection.

D. Results of Varying Slewing Number

By simultaneously changing the distance from the
slewing mirror to the cell entrance and adjusting w,
we can change N, while keeping v constant. In-
creasing N, increases the cooling at the far end of the
cell relative to that at the cell entrance; thus, as N,
increases, the region over which significant blooming
occurs is compressed toward the cell entrance. This
compression of the blooming zone should, in turn,
make it easier for adaptive-optics systems to correct
for the blooming.

The experimental results are shown in Fig. 8,
where we plot percentage increase in maximum in-
tensity against N,. We observe that, consistent with
theoretical predictions, the phase correction is more
effective at higher slewing numbers. At first, the
percentage improvement increases roughly linearly
with N, but as N, is further increased the incremen-
tal improvement decreases. Thus, there is some in-
dication that a practical limit may be reached beyond
which further reducing the blooming zone does not
significantly improve the correction.

E. Required Accuracy of Phase Correction

In Fig. 3 we showed a corrected curve with the mir-
ror amplitude always adjusted to give maximum in-
tensity. But from a practical point of view, it is also
important to know how sensitive this maximum is to
changes in the deformation amplitude. In Fig. 9 we
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Fig. 8. Percentage increase in maximum intensity vs slewing
number. ¢ = 1.65 cm/sec, N¢ = 0.19. Other parameters are listed
in the text.
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Fig. 9. Peak focal-plane intensity vs peak-to-peak mirror defor-
mation amplitude. The mirror profile is given in Fig. 1. v = 1.65
em/sec, Ne = 0.19, N_ = 10, P = 0.4 W. Other parameters are
listed in the text.

plot peak irradiance against peak-to-peak mirror de-
formation for a particular set of experimental condi-
tions. I, is normalized so that I, = 1.0 when the de-
formation is zero (mirror flat); the shape of the mir-
ror contour is still given by Fig. 1. We note that the
peak corrected intensity is a factor of 2.5 greater than
uncorrected—a respectable correction. But equally
important, we observe that the correction curve is
bell-shaped with an extremely broad peak. The
width at 90% maximum is marked; we see that the
amplitude of the phase correction can vary +30%,
while the irradiance decreases only 10%. This result
is extremely encouraging, for it demonstrates that
one does not have to apply phase corrections with
great precision for them to be effective.
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Our experimental results are uniformly in accord
with the case shown. In each case there is a broad
maximum in the irradiance vs deformation curve.
This pleasant result was unanticipated theoretically,
but we have since checked our results using the Brad-
ley-Herrmann propagation code. We found theoreti-
cally that varying the deformation amplitude +20%
from optimum produced only a 5% decrease in peak
intensity—a result in good agreement with the exper-
imental results.

V. Conclusion

In this investigation we have obtained the first ex-
perimental evidence for the feasibility of compensat-
ing for cw convection-dominated thermal blooming
by using a deformable mirror to add phase correc-
tions to the laser beam. We have conclusively dem-
onstrated that this technique can produce significant
increases in transmitted intensity. Further work is
necessary to determine the limits of the correction
method, but its basic applicability has now been ex-
perimentally proven.

We thank J. Herrmann and L. A. Popper for help
with the propagation code and J. J. Tynan for help
with the experimental apparatus.

This work was sponsored by the Advanced Re-
search Projects Agency of the Department of De-
fense.
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Bandwidth specification for adaptive optics systems*

Darryl P. Greenwood
Lincoln Laboratory, Massachusetts Institute of Technology. Lexington, Massachusetts 02173
(Received 9 July 1976)

A simplified expression for the bandwidth of an adaptive optics system is found to depend on a weighted path
integral of the turbulence strength, where the weighting is transverse wind velocity to the 5/3 power. The
wave-front corrector is conservatively assumed to match the phase perfectly, at least spatially, if not
temporally. For the case of astronomical imaging from a mountaintop observatory, the necessary bandwidth is
found to be less than 200 Hz.

In an earlier paper, ' the power spectra describing cor- to the § power. Even that integral may be easily

rector motion were considered as necessary elements evaluated analytically when Cf, is a constant and the wind
of a complete servo system design for an adaptive op- speed is composed of a constant plus a pseudowind due
tics system. However, for a preliminary design, a to slew. The resultof this final simplification may be
more simplified handbook-type formula for bandwidth easily programmed on a hand-held scientific calculator.
is more desirable. This paper presents such a formula

for the servo cutoff frequency without making any sig- Rather than investigate the way a wave-front corrector

nificantly limiting assumptions. Basically, the result would respond to a phase aberration, we have considered
depends on a weighted integral of the turbulence strength the statistics of the phase itself, so the resultant band-
C!, where the weighting is the transverse wind velocity width is conservative in that we assume the corrector
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FIG. 1. Representative plots of the power spectra of segments
within a phase corrector, for pistons located at the centex (D
and at the edge (I and INII). Curve 1 is for a gross piston re-
ference and curve Il for a gross tilt reference. The type of
reference does not affect curve I. The high-frequency roll- off
is determined by the size of the corrector, with IV represent-
ing a finite corrector segment l!b the diameter of the aperture,
and V representing a segment of size zero. The entire dashed
line is the simple power spectrum given by Eq. (1).

perfectly matches the wave front, at least spatially, if
not temporally. This avoids making any assumption on
the nature of the corrector, and the corrector may be
modal or zonal, segmented or continuous. To amplify
the usefulness of the resultant formula, we carry out
integrations for two cases: one representing a near-
horizontal, moderately short range, and one consistent
with astronomical observation.

In the more detailed analysis, ! we considered a seg-
mented corrector composed of any array of movable
pistons which could also be tilted in order to form a
least-squares fit to the wave front over the small circu-
lar region defined by the pistons. There was an option
of referencing the phase at a point in the aperture to
either the average phase across the aperture (gross pis-
ton reference) or the tilt across the aperture (gross tilt
reference). Examples of such spectra are shown in Fig,
1 for pistens at the center and the edge of the aperture,
These curves are diagrammatic in that they are not for
any specific atmospheric conditions. The low frequen-
cies in these curves are governed by the type of phase
reference chosen, whereas the high frequencies are af-
fected by the segment size. If we let the segment size
go to zero, then all the curves have a common high-fre-
quency asymptote given by a path integral of Eq. (72) in
the earlier paper. The result, which applies to either
plane or spherical waves, is

L
lim F,(f) =0.0326 kz,f"“f Ci2) ¥V dz , (1)
fow= 0

where f is cyclic frequency, k =27/ is the wave number
(A is wavelength), L is the path length, v(z) the wind
speed transverse to the path, C%(z) the refractive-index
structure parameter, and z is the incremental position
along the path from z =0 at the telescope (or receiver)
to z = L at the source. For astronomical seeing, the
upper limit L is replaced by =,

The asymptote given by Eq. (1) is simply the spectrum

of phase for Kolmogorov turbulence, where the phase is

39) J. Opt. Soc. Am., Vol. 67, No. 3, March 1977

not referenced to either gross piston or gross tilt. The
phase spectrum is also given by Tatarskii, but only for
the special case where v(z) and C(z) are independent of
z. A tacit assumption in the derivation of Eq. (1) is
that the frequencies are small compared with the char-
acteristic frequency of amplitude scintillation, or f
«o/(AL)*2, Admittedly, v is actually a function of
path position z, and L may be only a scale height for
astronomical seeing; but rather than go into a more
rigorous analysis, we note that if the inequality is re-
versed, such that f > v/(AL)'/2, then Eq. (1) is simply
multiplied by 3.

Bandwidths are determined by integrating Fo(f) as
filtered by a filter rejection response. Suppose the
closed-loop servo response, the Fourier transform of
the impulse response, is given by the complex function
H(f, f.), where f, represents a characteristic frequency
such as a 3 dB point. The rejection response, in terms
of power, is then |1 ~ H(f, f.)|®. Thus, the rejected,
or uncorrected, power is

ot= [ 1N-HU, L)EFNE @)
0

Typically, it is o which we will specify in order to de-
termine f_ for a certain set of atmospheric conditions.

Since there are many types of servo closed-loop re-
sponses which might be implemented, we chose two ex-
treme forms for H(f, f.) which should represent the
range of possibilities. First, to represent a sharp cut-
off, we used a binary filter given by

=,
f>r

Secondly, we chose an RC filter to represent a slow
roll-off, and in fact, many adaptive optics servo sys-
tems have such a response in the neighborhood of the

3 dB point. (For higher frequencies, the actual re-
sponse may drop off more rapidly than 20 dB/decade,
but this will have little impact since the spectrum itself
has a rather steep f ®/® dependence.) For the RC filter
we have

H(f, )= +if /f)? (4)

We will not concern ourselves with the phase lag
associated with such a filter,

1
H(f,f) = { 3
0

If we assume the cutoff frequency which will be even-
tually derived is to the right of the low-frequency breaks
indicated in Fig. 1, then it is sufficient to use the
asymptotic form of F,(f) in the integration of Eq. (2).
This assumption may be alternatively stated as the re-
jected power 03. From the parent paper,' we find that
the aperture-averaged variance of phase referenced to
gross tilt is

03 =0.141 (D/7)%/® , (5)

where D is the telescope diameter and 7, is Fried’s co-
herence length.® For convenience, we repeat here the
definition of », as

L
it =0.4238 [ Cl) Qe ®
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where Q(z) =1 for plane waves, and Q(z) =[(L - 2)/L)*/*
for spherical waves. A typical value of o, might be 0,27
rad (or fy wave), which requires that the integrated
turbulence strength be such that D/r,>>0.74. Fortu-
nately, D/, should be much greater than 0.74 to war-
rant the use of an adaptive optic in the first place, So
we comfortably proceed with the integration of Eq. (2),
using the asymptotic spectrum, Eq. (1). After integrat-
ing Eq. (2) with a binary filter, we invert the result to
express f. in terms of o, and find

£.=[0.0196 (/o) f : C¥(2) v%/3(2)dz]?’S . (7
0

For the RC-filter function, the constant 0.0196 becomes
0.102, and thus f, is 2,70 times larger.

There are two special cases of interest. The first
is consistent with many ground-based operations over
near-horizontal ranges, and the second is that of astro-
nomical observation. For the firsi vase, we assume
C? is a constant and the transverse wind speed is com-
posed of a constant v, plus a pseudowind wz due to slew-
ing at an angular rate w. Then we find

R (A

for a binary filter, and f, is 2,70 times higher for an
RC ftilter. As an example, suppose o, =0.27 rad,
A=10.6 um, C2=10"* m?/? y,=4 m/s, w=0.01 rad/s,
and L =2000 m. For these conditions, we find f, would
be in the range of 31 Hz for a binary filter to 84 Hz for
an RC filter.

For the astronomical case, the models for v and C%
become more complicated. We have chosen to calculate
/. based on recently published data for an astronomical
site. Miller, Zieske, and Hanson' report profiles of
C? versus altitude for three nights at the ARPA Maui
Optical Station (AMOS). Our model of their data is

C¥z) =[2.2%107" (2 5in6 +10)7+* +4,3x10™)
x exp| ~ (z sinf) /4000] , (9)

where 6 is the elevation angle and the units of C%and z
are m*/® and m, respectively. For a wind velocity
model, we averaged rawinsonde data’® collected at Lihue
(island of Kauai), Hawaii, for the years 1950-1970 and
at Hilo, Hawaii, for the years 1950-1974. We modeled
wind speed as a constant, to represent the lower alti-
tudes, plus a Gaussian to represent the jet stream.

The model, consisting of the mean wind speed plus one
standard deviation, is

(2 8iné - 9400)]' } ; 10)

v(z)=8+30 exp{-[_._m__

where v and z are in MKS units. Implicit in Eq. (10) is
the knowledge that the site altitude corresponding to

2=0 is 3048 m above MSL. We have taken the conser-
vative assumption that the winds are entirely transverse
to the path; however, if the wind is blowing predominant-
ly downrange rather than cross-range, there would be
an additional siné muitiplying all of Eq. (10).

For the conditions of turbulence and wind speed given
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in Eqs. (9) and (10), as well as for 0,=0.27 rad, A=0.5
um, and 6= 90°, the calculated cutoff frequencies are
£, (binary) = 28 Hz and f,(RC) =75 Hz. For these same
conditions, we may calculate 7, and verify the assump-
tion that D/r,>>0.74. Using Eq. (6) we find 7,=0.13 m,
and thus D>0.1 m, which is easily satisfied. This val-
ue of 7, compares favorably with the median value of
0.10 m (at A=0.5 um) reported by Fried® for the U.S.
Naval Observatory at Flagstaff, Arizona, and the Kitt
Peak National Observatory.

These values of f, and r, can easily be scaled to other
elevation angles and wavelengths. The elevaticn angle
scalings are f,~ (sin6)™*/% assuming the winds are en-
tirely cross-range, f.~ (sin6)?/® when the winds are
downrange, and 7y~ (sin6)*/® independent of winds. The
wavelength (or actually wave number) scalings are
f.~k%5 and r,~k®/*, We also suppose the reader may
want to increase or decrease the entire C2 profile, for
which we point out that f,~ (C3)*/ and r,~ (C?)™/%, Over-
all wind-speed scaling affects only f, in that /. ~v. Let
us now consider what may be a near-worst case, ot
6=30° (winds cross-range) and a C? twice the values of
the model. We shall not scale v since the model already
consists of the mean plus one standard deviation. Also,
at least for the visible wavelengths, A=0.5 um should
suffice. For these near-worst-case conditions, the
actual cutoff frequency may lie between f, (binary) =64
Hz and f_ (RC) =172 Hz.

In summary, we have provided simplified formulas
for the bandwidth of the phase corrector and servo con-
trol of an adaptive optics system. The formulas should
be used as good rules-of-thumb for perhaps all but the
very final stages of the servo design. At that point,
more precise power spectra' should be consulted. I
we have used the more precise spectra with the high-
frequency roll-off which results from having a finite
actuator spacing, the calculated bandwidth would have
been slightly lower. The specification derived in this
paper is to be taken as a conservative estimate, based
on an infinite number of corrector actuators. To apply
our result, Eq. (7), requires knowledge of both wind
speed and turbulence profiles on the optical path. To
demonstrate the utility of the formula, we investigate
two cases of interest: one essentially a horizontal path
and one consistent with astronomical observation from
a mountaintop. In both cases we found the bandwidths
to be fairly low, less than 200 Hz, giving encourage-
ment that the control system and corrector mirror need
not be extremely complicated for many applications.

*This work was supported by the Advanced Research Projects
Agency of the Department of Defense, -
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Properties of phase conjugate adaptive optical systems*

Jan Herrmann
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts 02173
(Received 12 July 1976)
The phase conjugate COAT (coherent optical adaptive technique) is investigated for thin, nonlinear lenses,
simulating thermal blooming. The iteration scheme applied has convergent and divergent regimes.

I. INTRODUCTION

The expresssion phase conjugate coherent optical
adaptive technique (COAT) is a term applied to a tech-
nique used to compensate for atmospherically induced
phase distortions of a laser beam.! The signal from a
reflecting target is analyzed in the transmitter-receiver
aperture and the conjugate of its phase is applied as a
correction to the transmitted wave. The phase con-
jugate COAT scheme has to be distinguished from the
multidither COAT, 2 which uses a modulation technique
of the phase front to maximize the intensity on a glint
in the target plane,

In order to reconstruct images, it is necessary to
control the amplitude of the transmitted beam as well
as its phase. If, however, one desires to maximize the
intensity delivered onto the target, amplitude control is
not necessary, and it has been demonstrated that phase
conjugate COAT systems can compensate for the phase
distortions due to atmospheric turbulence, '

Calculations with our propagation codes using a phase
conjugate COAT have also been performed to reduce
thermal blooming, but we found, as did others, * that
the presence of strong thermal blooming can lead to
divergence of the iteration scheme.

We have investigated convergence properties of the
phase conjugate COAT by inserting thin, nonlinear
lenses (simulating thermal blooming) between the trans-
mitter and the focus. The phase conjugate correction
is performed using the following scheme. The outgoing
wave is first focused at the target; it arrives with a
certain irradiance level at the lenses, which determines
the radius of curvature of each lens. The return wave
is assumed to originate from a point source in the tar-
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get plane. It passes through the lenses, and its radius
of curvature at the transmitter is used as the radius of
curvature of the next outgoing wave. The results show
that there exist a convergent and a divergent range of
parameters, depending on the strength of the nonlinear-
ity. Convergence occurs for cases where an appro-
priate value of the radius of curvature at the transmitter
leads to complete refocusing. For cases where re-
focusing is not possible, the phase conjugate COAT
iteration diverges.

In this paper we study the convergence property of an
idealized phase conjugated COAT system. The phase
changes appearing in nonlinear propagation calculations
are replaced by thin lenses which change only the cur-
vature of the wave front. We perform the calculations
in the geometric optics limit as well as with Gaussian
beams. The convergence properties of these two cases
are qualitatively the same. The program was written
with an arbitrary number of equally spaced lenses. The
qualitative features of the convergence of the phase con-
jugate COAT are independent of the number of lenses.

Il. NONLINEAR LENSES

The change in the curvature of the wave front due to a
lens at position z is assumed to be

K(z)=S[a,/a(2)]°, (1)

where S is the strength of the nonlinearity, a(z) is the
radius of the beam, and 4, is the radius at the trans-
mitter. The value of the exponent @ can be arbitrarily
chosen.

The main motivation for introducing such lenses is
to simulate cw thermal blooming to a first order. The
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index of refraction of the medium due to energy ab-
sorbed from a Gaussian beam is

aP 1 X —y')
mxura—y(hrerl;‘)exp(?,— . (2)
where « is the absorption coefficient, P the power of
the beam, v the transverse wind velocity, and a, and

a, are the radii in x and y directions. In the center of
the beam there is no curvature in the x direction. The
curvature in the y direction is proportional to 1/(13. A
thermal-blooming lens is therefore approximately de-
scribed by the value @ =3 in the expression for the non-
linear lens, Eq. (1).

Ill. GEOMETRICAL BEAMS WITH A SINGLE LENS

We describe in some detail the simplest case, which
is the geometrical optics limit with a single lens. We
require that the focus of the corrected beam appear in
the target plane.

A. Linear propagation

The undisturbed beam focuses at the target if R,
equals the distance to the target R; the notation used
is described in Fig. 1. Inserting a lens at a distance
L from the focus changes the curvature of the wave
front by K and the focus is displaced by the distance D
determined by the relation

1 1

T T el @

valid for any value of the initial radius of curvature Ry,

The requirement D=0 leads to the condition for the
corrected radius of curvature at the transmitter Ry.:

Rrc=R-L!/(L+1/K]} . 4)

A glint inserted in the target plane and propagated
through the lens arrives at the transmitter with the
same radius of curvature R;.. In this derivation, no
limit was imposed on the transmitter size or on the
size of the beam at the position of the lens.

R-L =t

SR S

TRANSMITTER TARGET

R = RANGE * REFERENCE LENGTH

L * LEVER ARM

Ry * RADIUS OF CURVATURE OF WAVEFRONT AT TRANSMITTER
K = I/R_* CURVATURE CHANGE DUE TO THE LENS

FIG. 1. Notation used in the phase conjugate COAT calcula-
tions for geometric beam.
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a, = TRANSMITTER RADIUS
a = BEAM RADIUS AT LENS POSITION

FIG. 2. Beam with corrected radius of curvature at the trans-
mitter.

B. Nonlinear propagation

1. Analytical solutions: We now keep the transmitter
size and the power of the beam constant and assume
that the curvature K is proportional to the irradiance,

K=S(a;/a)? , (5)

where a is the radius of the beam at the position of the
lens. This is a special case of Eq. (1) for Q=2, per-
mitting simple explicit solutions. The radius a is given
by (see Fig. 2)

a;/a=R;/(L+Rp-R) . (8)
The equivalent to Eq. (3) is now
2
1 1 SRZ @

L+D L+R,-R (@L+Ry=RP*

The requirement D=0 leads to a quadratic equation
for the radius of curvature at the transmitter with the
condition for the existence of a real root

1-4SR(R-L)/L=0. (8)

If Sand L do not satisfy the condition, Eq. (8), we
ask for the radius of curvature at the transmitter which
minimizes the radius of the beam in the target plane,
which is given by a,=aD /(L + D). Using Eqs. () and
(7) and the requirement da,/dR; =0, we get a quadratic
equation for R,. The solution of this equation leads to
the minimum radius of the beam in the focal plane,
which we indicate by a horizontal dashed line in Fig. 3.

2. Iterative solutions: The phase conjugate correc-
tion is performed using the following interaction
scheme., We call Ry, the radius of curvature at the
transmitter and K, the curvature of the nonlinear lens
at the nth iteration. We start with Ry, = Rand the initial
curvature of the lens K,=S(R/L)® and get a new value
for the radius of curvature at the transmitter

Rpgy=R=-L*/(L +1/K,) , ()}
using the value of the curvature of the lens
K,=SR%}.,/(Rpo+L~R)® (10)

for each iteration,
The results of the iteration are presented in Fig. 3,
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oR. 1o

Ko=15(6=1/2) .-
At i
Q208 === 0

BEAM RADIUS AT TARGET

=X —-~0.118
Ko= 0.50 (6 =1/2)
_0.75

ITERATION

FIG. 3. Beam radius at the target as a function of iteration
for different values of the initial curvature K,=S/L?. The
two dashed curves use an iteration with half the gain,

where we plot the radius in the target plane a, as a
function of the iteration number for the case L=R/2.
Other values of L behave qualitatively the same. For
Ky=1 a solution D=0 exists and the iteration seems to
converge. For K,= 1 the iteration approaches the
analytical solution but diverges for further interations.

An attempt was made to affect the divergence by re-
ducing the gain of the iteration, using for the new ra-
dius of curvature the average of the value calculated
by Eq. (9)and the previous one,

R’r. =0, S(RT" » Rr(,,.‘)) )

for the calculation of the curvature by Eq. (10). The
results are indicated in Fig. 3 by G=1/2 for two val~
uee, Ky=0.5 and X,=1.5. Convergence and divergence
for these two cases are slower, but not qualitatively
changed.

C. Phase conjugate COAT with time constants

In the previous sections, a study of a simple single
lens system was presented in order to simulate the
phase-conjucated COAT technique and demonstrate the
lack of convergence for strong enough nonlinearities.
The iteration performed there corresponds to the con-
dition sketched in Fig. 4, for which the atmospheric
time constant {,, is much smaller than the iteration
time constant ¢,,, describing a system which uses a
phase correction baged on the return from a glint only
after the atmosphere reaches steady-state conditions.
We generalize the iteration scheme, permitting an ar-
bitrary value of ¢, /4,,, assuming an exponential ap-
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proach of the nonlinear lens to the steady state. This
modification leads to the iteration

Ryo=R, K’ =0withn=0,1,2,... ,
Ko=S[Rpa/(L=R+Rp)I°,
K,=fK, +1=-0K,,

Rrge =R=LAL+1/K})",

where R, is the radius of curvature at the transmitter
for the nth iteration, The strength of the nonlinearity
is S and Q is its power law, The position of the lens is
L, measured from the target. The steady-state value
of the curvature of the lens is K,, but the actual curva-
ture is K, determined at the moment when the glint
return senses it., The time constants are included in
the coefficient f=exp(~ t,,/,,). This model describes
a correction system which itself has a zero time con-
stant, The results of the iteration with atmospheric
time constants are shown in Fig. 5 for a particular
case. The beam radius at the target is plotted as a
function of the iteration for some values of the coeffi-
cient f. The curves with larger atmospheric time con-
stants, corresponding to larger values of f, are lower
than the ones with shorter time constants, but even-
tually they also diverge.

CURVATURE
OF LENS
GLINT GLINT
GLINT ‘ ‘
— tgt ‘ | | cw
| | ’—"
| - |
>
—t | |
7 | | |
/ |
/ | |
A ‘ I
——th="I TIME
IRRADIANCE
GLINT
— |
— 'D o -—Olfq L—
| mP
|
™ ’
i
3+
CURVATURE |
OF LENS |
| -
b—’o' ' ""
e—t—-
. |
”
»” |
TIME

FIG. 4. Schematic representation of phase conjugate COAT
systems with an atmospheric time constant t,,. For the cw
case, the iteration time is t,,. For the MP case, the pulse
length is ¢,, the pulse spacing is T,, and the time between the
sensing of the atmosphere by a glint return and the next pulse
is t,. Standard multipulse conditions require t, <ty <«<T,.
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If we reduce the iteration time constant, we can in-
crease the time before onset of the divergence, Let us
assume an atmospheric time constant of 0.1 s and an
iteration time of 1 ms giving a value f=0,99, The di-
vergence started after about 500 iterations, correspond-
ing in this case to } s. A fast correcting adaptive sys-
tem can, temporarily at least, overcome the divergence
problems of the phase conjugate COAT for cw beams,

In Fig. 4 we also present the situation for a 'multi-
pulse case. The pulse length is called ¢, and the pulse
spacing 7,. Standard multipulse cases satisfy ¢, <</,
« T,, expressing the condition that no self-blooming for
each pulse occurs, and that each pulse is subjected to
the heat deposit from previous pulses only, assuming
validity of the long-time hydrodynamic limit. If the
time between the glint sensing and the next pulse ¢, is
much smaller than the atmospheric time constant ¢,,,
the system becomes linear for that particular pulse,
The corrections due to such phase-conjugated COAT
systems are limited by finite aperture sizes.

1IV. GAUSSIAN BEAMS AND MULTILENS SYSTEMS

A. Limits to the phase compensation for a Gaussian
beam for linear distortions

Phase corrections for linear systems (e.g., turbu-
lence) can restore the irradiance in the focal plane only

22 0=e-p(7v'/vw)
teo
025
Q=2
L =05
s =032
Ko= 125
-
S o2
@
& 05
b4
w
2
(=]
4
[ 4
s
4
w
@™
o1 075}
]
| CHANGE
|OF SCALE
1 al ks
o] s ) 20 30
ITERATION

FIG. 5. Radius of beam in the target plane as a function of
iteration number for some values of the time constants de-
scribed by the coefficient f=exp(~t,,/t,).
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FIG. 6. Limits to phase correction for Gaussian beam for
single constant lens inserted at distance z between transmitter
and target.

to a limited degree if a fixed transmitter size is as-
sumed, We show this for the simple case of a constant
thin lens with curvature K inserted in a Gaussian beam*
at a position between the transmitter and target.

The beam radius in the target plane a, is given by

a?=a?(1+CR+KR(1-2)+KRCRz(1-2)]?
+a?[1+KRz(1-2))?/N% ,

where a, is the radius of the beam at the transmitter
(1/e power), R the range, C the curvature of the beam

GEOMETRICAL BEAM
010f 5 LENSES, Q=3

BEAM RADIUS AT TARGET

$=0.0042%
i A 1
100 102 104 106 108 10 ARF] ARL) e
CURVATURE AT TRANSMITTER C
FIG. 7. Beam radius at target vs curvature at transmitter for
five-lens system with geometrical beam,
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GEOMETRICAL BEAM
S LENSES,Q*3

$ = 0.006

$=0005 S =000425

BEAM RADIUS AT TARGET

ITERATION
FIG. 8. Beam radius at target vs iteration for cases of Fig. 7.

at the transmitter which is being varied, Np=ka?/R the
Fresnel number, and z is the distance to the thin lens
measured from the transmitter in units of R.

The minimum radius of the Gaussian beam ay, ,,,
which can be achieved by appropriate choice of the
curvature C at the transmitter, is

@, mia=a;[1+KR2(1 = 2))/N, ;

its maximum value as a function of z is at z=%. The
curvature which gives the minimum radius C,,, is

CunwR=-[1+KR(1-2)]/[1+KRz2(1-2)].

The minimum radius and the corresponding curvature

* GAUSSIAN BEAM

ono"r 5 LENSES,Q+3
N, = 100
009+
acel L $ =0.005

0074

006

$+0002

BEAM RADIUS AT TARGET

!
|
|
J

|
ool A A i A L A ok, y J
100 102 104 108 108 110 "z 114 11e 18

CURVATURE AT TRANSMITTER C
FIG. 9. Beam radius at target vs curvature at transmitter for
five-lens system with Gaussian beam.
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FIG. 10. Beam radius at target vs iteration for the cases of
Fig. 9.

are plotted as a function of 2 in Fig, 6. At 2=0 a com-
plete correction is possible, and at z=1 no correction
is required.

B. Nonlinear propagation

Our model for a phase conjugate COAT system was
extended to permit multiple lenses. A further exten-
sion permits us to use Gaussian beams for the beam
propagated from the transmitter to the target. A
geometrical beam is kept for the glint return.

in Fig. 7 we plot the radius of the geometrical beam
in the target plane as a function of curvature at the
transmitter C for some values of the strength of non-
linearity S for a system of five uniformly spaced lenses.
It can be seen that it is not possible to perform an exact
compensation for values S>0.004. The phase-conjugate
iteration for the same five-lens system is shown in Fig.
8. The onset of divergence seems to coincide with the
lack of an exact compensation,

In Fig. 9 we plot the radius in the target plane for a
five-lens system using a Gaussian beam with a Fresnel
number of Np=100, The diffraction-limited radius is
now 1/Np. The onset of divergence is related in some
way to the change in the shape of the curves. The
phase conjugate COAT iteration is shown in Fig. 10.

It exhibits the same qualitative features as the geome-
trical beam in Fig, 7, but it shows that for Gaussian
beams, even for the convergent cases, the radius can-
not be reduced to the diffraction-limited value.

V. CONCLUSION

In conclusion, the phase conjugate COAT method
leads to nearly complete compensation of atmospheric
turbulence and partial compensation for cases with
moderate thermal blooming, with and without turbu-
lence, so long as the effective thermal lens is thin and
near the transmitter, as for slewed beams. For cases
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with substantial thermal blooming, the phase conjugate
method gives some initial improvement but does not
converge. A sufficiently fast correction system may
overcome this problem for a limited time.

All calculations presented here refer to idealized
cases; questions relating to an experimental realiza-
tion (like phase measurements, signal to noise) have
not been included in our study.
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Tracking turbulence-induced tilt errors with shared and adjacent apertures*t
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Tracking apertures which are on axis, off axis, and annular with respect to the pointer optics are considered
in terms of their effectiveness in canceling atmospheric turbulence-induced wave-front tilt errors. The off-axis
tracker is found to be the least effective, whereras the annular configuration is least sensitive to the wind
profile and slewing conditions. The key to minimizing the centroid wander in the focal plane is the proper
setting of the low-pass cutoff frequency of the tracking servo. That setting is based on wind velocity, slew
rate, and aperture diameters. A too-high setting of the cutoff frequency can actually degrade tracker

performance when the tracking aperture is small.

I. INTRODUCTION

In many optical pointing and tracking systems it is
not practical to beam split the incoming wave front in
order to derive a tracking signal. Often the tracking
optics are placed outside the aperture of the pointer.
Such a configuration is acceptable for the gross track-
ing of the target, but there are serious reservations as
to whether turbulence errors can be effectively canceled
in this configuration. The problem is that the scale
sizes of the phase aberrations due to turbulence may be
smaller than either the pointer or tracker optics and
hence the two fields of view may not see the same phase
variations. We will investigate the theoretical effec-
tiveness of tracking in an off- axis configuration by con-
sidering the correlation of wave-front tilts on two aper-
tures of different diameters.

We can state in advance that the prognosis for off-
axis tracking of turbulence is poor, but we will not
leave the situation there. Two other configurations are
considered which offer much greater advantages to can-
celing turbulence-induced centroid motion. Both place
the tracker concentric with the pointer. The first is to
place the tracker within the pointer central obscuration,
and the second is to place the tracker in an annulus sur-
rounding the pointer.

Our method of specifying tracker effectiveness is to
calculate the statistical variance of the difference be-
tween where you would like to point and where the
tracker tells you to point. It is important in this anal-
ysis and in the real system to include a variable cutoff
frequency of the tracker servo response. High tempor-
al frequencies must be carefully rejected because they
correspond to those small scale sizes which are not
seen the same by both pointer and tracker. The setting
of the cutoff frequency will be determined from the na-
tural wind velocity, slew rate, and aperture dimensions,
We will provide sets of 15 error curves in normalized
coordinates to serve as a reference gallery of condi-
tions from which the user may select the one most ap-
propriate to his tracking scenario.

To evaluate the effectiveness of the various tracker-
pointer configurations, we established three geome-
tries as shown in Figs. 1-3. In the first is a pair of
filled apertures (i.e., no central obscurations) of di-
ameters D for the pointer and d for the tracker. The
axial separation is »;, and », may be varied from 0 to
= essentially. This allows for placement of the tracker
on axis or off axis. but when the tracker is within the
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field of view of the pointer, a portion of the optical sig-
nal must be diverted by means of a beam splitter from
the pointer to the tracker. Note the presence of the
low-pass filter impulse response h(f), which may be
inherent in the servo, but which must have a variable
cutoff frequency. In Fig, 2 is the second configuration,
termed “annular,” where again the tracker signal is
low-pass filtered before being fed to the pointer. We
choose, for the annular configuration, to retain the
symbol D for the larger diameter and d for the smaller.
Hence the pcinter is now of diameter d, whereas for the
filled configuration it was of diameter D, Finally, in
Fig. 3 we return to the on-axis case and allow the
tracker to obscure a region of the pointer. We will find
that the results of this configuration, termed “interi-
or,” are almost identical to the filled configuration
with », =0, so long as dZ3D.

II. THEORY

For each configuratior we wish to minimize the er-
ror signal €(t) between the desired pointer angle a,(t)
and the indicated tracker angle a,(t) as filtered by A(t).
This is represented by the convolution relation

€(t)=ay(t) - a,t)*h(t) . (1)

More physically, €(f) is the angular wander of the cen-
troid in the target plane, if we follow reciprocity argu-
ments. The error variance is readily found to be

02(fu0) = { W) drs [ LW ) df

’2_£ H”z(f,fco)W”(f)d_f ’ (2)
FILTER
e n iy
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| /
x
ds2
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FIC. 1. Geometry: filled configuration.
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